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Preface

Lie theory has its roots in the work of Sophus Lie, who studied certain trans-
formation groups that are now called Lie groups. His work led to the discovery
of Lie algebras. By now, both Lie groups and Lie algebras have become essen-
tial to many parts of mathematics and theoretical physics. In the meantime,
Lie algebras have become a central object of interest in their own right, not
least because of their description by the Serre relations, whose generalisations
have been very important.

This text aims to give a very basic algebraic introduction to Lie algebras.
We begin here by mentioning that “Lie” should be pronounced “lee”. The
only prerequisite is some linear algebra; we try throughout to be as simple as
possible, and make no attempt at full generality. We start with fundamental
concepts, including ideals and homomorphisms. A section on Lie algebras of
small dimension provides a useful source of examples. We then define solvable
and simple Lie algebras and give a rough strategy towards the classification of
the finite-dimensional complex Lie algebras. The next chapters discuss Engel’s
Theorem, Lie’s Theorem, and Cartan’s Criteria and introduce some represen-
tation theory.

We then describe the root space decomposition of a semisimple Lie alge-
bra and introduce Dynkin diagrams to classify the possible root systems. To
practice these ideas, we find the root space decompositions of the classical Lie
algebras. We then outline the remarkable classification of the finite-dimensional
simple Lie algebras over the complex numbers.

The final chapter is a survey on further directions. In the first part, we
introduce the universal enveloping algebra of a Lie algebra and look in more



vi Preface

detail at representations of Lie algebras. We then look at the Serre relations
and their generalisations to Kac-Moody Lie algebras and quantum groups and
describe the Lie ring associated to a group. In fact, Dynkin diagrams and the
classification of the finite-dimensional complex semisimple Lie algebras have
had a far-reaching influence on modern mathematics; we end by giving an
illustration of this.

In Appendix A, we give a summary of the basic linear and bilinear alge-
bra we need. Some technical proofs are deferred to Appendices B, C, and D.
In Appendix E, we give answers to some selected exercises. We do, however,
encourage the reader to make a thorough unaided attempt at these exercises:
it is only when treated in this way that they will be of any benefit. Exercises
are marked 7 if an answer may be found in Appendix E and x if they are either
somewhat harder than average or go beyond the usual scope of the text.

University of Oxford Karin Erdmann
January 2006 Mark Wildon
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Introduction

We begin by defining Lie algebras and giving a collection of typical examples
to which we shall refer throughout this book. The remaining sections in this
chapter introduce the basic vocabulary of Lie algebras. The reader is reminded
that the prerequisite linear and bilinear algebra is summarised in Appendix A.

1.1 Definition of Lie Algebras

Let F be a field. A Lie algebra over F' is an F-vector space L, together with a
bilinear map, the Lie bracket

LxL—L, (z,y) [z,v],
satisfying the following properties:
[,2] =0 forallxze L, (L1)
[z, [y, 2]] + [y, [z, 2]] + [z, [z,9]] =0 for all z,y,z € L. (L2)

The Lie bracket [z,y] is often referred to as the commutator of x and y.
Condition (L2) is known as the Jacobi identity. As the Lie bracket [—,—] is
bilinear, we have

O=[z+yz+yl=[r2]+[zy + 2]+ [y, y] = [z.9] + [y, 2].
Hence condition (L1) implies

[z,y] = —[y,z] forall z,y € L. (L1")
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If the field F' does not have characteristic 2, then putting = y in (L1’) shows
that (L1’) implies (L1).

Unless specifically stated otherwise, all Lie algebras in this book should be
taken to be finite-dimensional. (In Chapter 15, we give a brief introduction to
the more subtle theory of infinite-dimensional Lie algebras.)

Exercise 1.1
(1) Show that [v,0] =0 =[0,v] for all v € L.

(ii) Suppose that =,y € L satisfy [z,y] # 0. Show that x and y are
linearly independent over F.

1.2 Some Examples

(1) Let F = R. The vector product (z,y) — = Ay defines the structure of
a Lie algebra on R3. We denote this Lie algebra by R3. Explicitly, if

T = (1’1,1'2,5U3) and Yy = (y17y27y3)7 then
T ANy = (T2y3 — T3Y2, T3Y1 — T1Y3, T1Y2 — T2Y1)-

Exercise 1.2

Convince yourself that A is bilinear. Then check that the Jacobi identity
holds. Hint: If = - y denotes the dot product of the vectors z,y € R3,
then

cA(yAz)=(x-2)y—(x-y)z forallz,y,z € R

(2) Any vector space V has a Lie bracket defined by [z,y] =0 for all z,y € V.
This is the abelian Lie algebra structure on V. In particular, the field F'
may be regarded as a 1-dimensional abelian Lie algebra.

(3) Suppose that V is a finite-dimensional vector space over F'. Write gl(V') for
the set of all linear maps from V' to V. This is again a vector space over F,

and it becomes a Lie algebra, known as the general linear algebra, if we
define the Lie bracket [—, —] by

[z,y] ;=zoy—yox forx,ycegl(V),
where o denotes the composition of maps.
Exercise 1.3

Check that the Jacobi identity holds. (This exercise is famous as one
that every mathematician should do at least once in her life.)
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(3"

Here is a matrix version. Write gl(n, F') for the vector space of all n x n
matrices over F' with the Lie bracket defined by

[z,y] := 2y — ya,
where xy is the usual product of the matrices x and y.

As a vector space, gl(n, F') has a basis consisting of the matriz units e;;
for 1 < 4,5 < n. Here e;; is the n x n matrix which has a 1 in the ij-th
position and all other entries are 0. We leave it as an exercise to check that

[eij, ext) = Ojkei — Siery,

where 0 is the Kronecker delta, defined by é;; = 1 if ¢ = j and d6;; = 0
otherwise. This formula can often be useful when calculating in gl(n, F').

Recall that the trace of a square matrix is the sum of its diagonal entries.
Let sl(n, F') be the subspace of gl(n, F') consisting of all matrices of trace 0.
For arbitrary square matrices = and y, the matrix xzy — yz has trace 0,
so [z,y] = xy — yx defines a Lie algebra structure on sl(n, F'): properties
(L1) and (L2) are inherited from gl(n, F'). This Lie algebra is known as the
special linear algebra. As a vector space, sl(n, F') has a basis consisting of
the e;; for i # j together with e;; — e;41441 for 1 <i < n.

Let b(n, F') be the upper triangular matrices in gl(n, F'). (A matrix x is
said to be upper triangular if 2;; = 0 whenever 7 > j.) This is a Lie algebra
with the same Lie bracket as gl(n, F).

Similarly, let n(n, F') be the strictly upper triangular matrices in gl(n, F).
(A matrix = is said to be strictly upper triangular if z;; = 0 whenever
i > j.) Again this is a Lie algebra with the same Lie bracket as gl(n, F).

Exercise 1.4

Check the assertions in (5).

1.3 Subalgebras and Ideals

The last two examples suggest that, given a Lie algebra L, we might define a
Lie subalgebra of L to be a vector subspace K C L such that

[,y] € K forall z,y € K.

Lie subalgebras are easily seen to be Lie algebras in their own right. In Examples
(4) and (5) above we saw three Lie subalgebras of gl(n, F').
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We also define an ideal of a Lie algebra L to be a subspace I of L such that

[x,y] €I forallze L, yel.

By (L1'), [z,y] = —[y,x], so we do not need to distinguish between left and
right ideals. For example, sl(n, F') is an ideal of gl(n, F'), and n(n, F) is an ideal
of b(n, F).

An ideal is always a subalgebra. On the other hand, a subalgebra need not be
an ideal. For example, b(n, F) is a subalgebra of gl(n, F'), but provided n > 2, it
is not an ideal. To see this, note that e;; € b(n, F') and ea; € gl(n, F'). However,
[621, 611} = €21 ¢ b(’I’L,F)

The Lie algebra L is itself an ideal of L. At the other extreme, {0} is an
ideal of L. We call these the trivial ideals of L. An important example of an
ideal which frequently is non-trivial is the centre of L, defined by

Z(L)y:={xeL:[z,y=0forallye L}.

We know precisely when L = Z(L) as this is the case if and only if L is
abelian. On the other hand, it might take some work to decide whether or not
Z(L) = {0}.

Exercise 1.5

Find Z(L) when L = sl(2, F'). You should find that the answer depends
on the characteristic of F.

1.4 Homomorphisms

If Ly and Lo are Lie algebras over a field F', then we say that a map ¢ : L1 — Lo
is a homomorphism if ¢ is a linear map and

o([z,y]) = [p(x), p(y)] forall z,y € L.

Notice that in this equation the first Lie bracket is taken in L; and the second
Lie bracket is taken in Lo. We say that ¢ is an isomorphism if ¢ is also bijective.

An extremely important homomorphism is the adjoint homomorphism . If L
is a Lie algebra, we define

ad: L — gl(L)

by (adz)(y) := [z,y] for x,y € L. It follows from the bilinearity of the Lie
bracket that the map adz is linear for each x € L. For the same reason, the
map x — adz is itself linear. So to show that ad is a homomorphism, all we
need to check is that

ad([z,y]) =adzoady —adyoadx forall z,y € L;
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this turns out to be equivalent to the Jacobi identity. The kernel of ad is the
centre of L.

Exercise 1.6

Show that if ¢ : Ly — Lo is a homomorphism, then the kernel of ¢,
ker ¢, is an ideal of L, and the image of ¢, im ¢, is a Lie subalgebra
of LQ.

Remark 1.1

Whenever one has a mathematical object, such as a vector space, group, or Lie
algebra, one has attendant homomorphisms. Such maps are of interest precisely
because they are structure preserving — homo, same; morphos, shape. For
example, working with vector spaces, if we add two vectors, and then apply a
homomorphism of vector spaces (also known as a linear map), the result should
be the same as if we had first applied the homomorphism, and then added the
image vectors.

Given a class of mathematical objects one can (with some thought) work out
what the relevant homomorphisms should be. Studying these homomorphisms
gives one important information about the structures of the objects concerned.
A common aim is to classify all objects of a given type; from this point of view,
we regard isomorphic objects as essentially the same. For example, two vector
spaces over the same field are isomorphic if and only if they have the same
dimension.

1.5 Algebras

An algebra over a field F' is a vector space A over F together with a bilinear
map,
Ax A=A, (z,y)— xy.

We say that xy is the product of x and y. Usually one studies algebras where
the product satisfies some further properties. In particular, Lie algebras are
the algebras satisfying identities (L1) and (L2). (And in this case we write the
product zy as [z,y].)

The algebra A is said to be associative if

(xy)z = z(yz) forall z,y,z € A

and wunital if there is an element 14 in A such that 142 = 2 = 214 for all
non-zero elements of A.
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For example, gl(V'), the vector space of linear transformations of the vector
space V', has the structure of a unital associative algebra where the product is
given by the composition of maps. The identity transformation is the identity
element in this algebra. Likewise gl(n, F'), the set of n X n matrices over F, is
a unital associative algebra with respect to matrix multiplication.

Apart from Lie algebras, most algebras one meets tend to be both associa-
tive and unital. It is important not to get confused between these two types of
algebras. One way to emphasise the distinction, which we have adopted, is to
always write the product in a Lie algebra with square brackets.

Exercise 1.7

Let L be a Lie algebra. Show that the Lie bracket is associative, that is,
[z, [y, 2]] = [[x,y], 2] for all z,y,z € L, if and only if for all a,b € L the
commutator [a,b] lies in Z(L).

If A is an associative algebra over F', then we define a new bilinear opera-
tion [—,—] on A by
[a,b] := ab—ba for all a,b € A.
Then A together with [—, —] is a Lie algebra; this is not hard to prove. The
Lie algebras gl(V') and gl(n, F') are special cases of this construction. In fact, if
you did Exercise 1.3, then you will already have proved that the product [—, —]
satisfies the Jacobi identity.

1.6 Derivations

Let A be an algebra over a field F. A deriwation of A is an F-linear map
D : A — A such that

D(ab) = aD(b) + D(a)b for all a,b € A.

Let Der A be the set of derivations of A. This set is closed under addition
and scalar multiplication and contains the zero map. Hence Der A is a vector
subspace of gl(A). Moreover, Der A is a Lie subalgebra of gl(A), for by part (i)
of the following exercise, if D and E are derivations then so is [D, E].

Exercise 1.8
Let D and E be derivations of an algebra A.
(i) Show that [D,E] = Do E — E o D is also a derivation.

(ii) Show that D o E need not be a derivation. (The following example
may be helpful.)
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Example 1.2

(1) Let A = C*°R be the vector space of all infinitely differentiable functions
R — R. For f,g € A, we define the product fg by pointwise multiplication:
(f9)(x) = f(x)g(x). With this definition, A is an associative algebra. The
usual derivative, D f = f’, is a derivation of A since by the product rule

D(fg) = (f9)' = f'g+ fg' = (Df)g+ f(Dyg).

(2) Let L be a Lie algebra and let z € L. The map adx : L — L is a derivation
of L since by the Jacobi identity

(adx)[yv Z} - [xa [ya ZH - Hl’,y}, Z} + [yv [‘T’ ZH = [(ad:c)y, Z} + [yv (adx)z]

for all y,z € L.

1.7 Structure Constants

If L is a Lie algebra over a field F' with basis (z1,...,2,), then [—, —] is com-
pletely determined by the products [x;,z;]. We define scalars afj € F such
that

n
[z, 2] = Z ai—“jxk.
k=1

The afj are the structure constants of L with respect to this basis. We emphasise
that the afj depend on the choice of basis of L: Different bases will in general
give different structure constants.

By (L1) and its corollary (L1’), [z;, ;] = 0 for all ¢ and [z;, ;] = —[z;, 2]
for all ¢ and j. So it is sufficient to know the structure constants afj for 1 <

1< j<n.
Exercise 1.9

Let Ly and Lo be Lie algebras. Show that L; is isomorphic to L if and
only if there is a basis By of L; and a basis By of Ly such that the
structure constants of L with respect to B; are equal to the structure
constants of Ly with respect to Bs.

Exercise 1.10

Let L be a Lie algebra with basis (21, ..., 2,). What condition does the
Jacobi identity impose on the structure constants ai—"j?



1.14.

1.15.

1.16.

1.17.
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EXERCISES
1.11.+ Let L; and Ly be two abelian Lie algebras. Show that L, and Lo
are isomorphic if and only if they have the same dimension.
1.12.71 Find the structure constants of sl(2, F') with respect to the basis
given by the matrices
0 1 0 0 1 0
(o) =) =G b))
1.13.  Prove that sl(2, C) has no non-trivial ideals.

Let L be the 3-dimensional complez Lie algebra with basis (z,y, 2)
and Lie bracket defined by
[z,9] = 2, [y, 2] ==, [z,2] =y.

(Here L is the “complexification” of the 3-dimensional real Lie alge-
bra R3.)

(i) Show that L is isomorphic to the Lie subalgebra of gl(3, C) con-
sisting of all 3 x 3 antisymmetric matrices with entries in C.

(ii) Find an explicit isomorphism sl(2,C) = L.

Let S be an n x n matrix with entries in a field F'. Define
gls(n, F) ={x €gl(n, F): 2'S = —Sz}.

(i) Show that glg(n, F') is a Lie subalgebra of gl(n, F).

(ii) Find glg(2,R) if § = <8 é)

(iii) Does there exist a matrix S such that glg(2,R) is equal to the
set of all diagonal matrices in gl(2,R)?

(iv) Find a matrix S such that glg(3,R) is isomorphic to the Lie
algebra R3 defined in §1.2, Example 1.

Hint: Part (i) of Exercise 1.14 is relevant.

Show, by giving an example, that if F' is a field of characteristic 2,
there are algebras over F which satisfy (L1’) and (L2) but are not
Lie algebras.

Let V' be an n-dimensional complex vector space and let L = gl(V).
Suppose that = € L is diagonalisable, with eigenvalues A1,..., A\,.
Show that ad z € gl(L) is also diagonalisable and that its eigenvalues
are \; — Aj for 1 <4,5 <n.



Exercises

1.18.

1.19.

Let L be a Lie algebra. We saw in §1.6, Example 1.2(2) that the maps
adxz : L — L for x € L are derivations of L; these are known as inner
derivations. Show that if IDer L is the set of inner derivations of L,
then IDer L is an ideal of Der L.

Let A be an algebra and let 6 : A — A be a derivation. Prove that ¢
satisfies the Leibniz rule

n

i (zy) = Z (Z) " (x)0" " (y) for all z,y € A.

r=0



